Practical Guide to Rock Tunneling

CRC Press Taylor & Francis Group

Contents

Fo	reword		xiii
Al	bout the	author	xv
A	cknowle	dgements	xvii
D	edication	n	xix
D	isclaime	*	xxi
Li	st of figi	ires and tables	xxiii
1	Introdu	iction	1
•	muout		14 5.4
2	Functio	onal uses of rock tunnels	3
	2.1	General	3
	2.2	Functional uses	3
3	Tunnel	project execution	5
	3.1	General	5
	3.2	Project delivery method	5
	3.3	Execution stages	6
	3.4	Pre-planning by client	6
	3.5	Project engineering by consultants	7
	3.6	Engineering effort and deliverables during execution	8
	3.7	Functional requirements for design build	9
	3.8	Early contractor engagement and involvement	9
	3.9	Constructability reviews	10
	3.10	Independent TBM risk assessment	10
4	Site inv	estigations	13
	4.1	General	13
	4.2	Potential consequences of limited site investigations	14
	4.3	Review of existing information and previous experience	15
	4.4	Planning and budgeting for site investigations	15
	4.5	Compilation of relevant information and base map	17

4	.6 Identification of key geological risks and possible concerns	17
	.7 Planning of phased investigations	18
4	.8 Field mapping and ground proofing of inferred	
	geological faults	19
	.9 Geophysical surveys	20
4.	0	22
4.	11 In situ testing	24
4.	12 Selection and preparation of samples	28
4.	13 Laboratory and quality assurance testing	29
4.	14 Field instrumentation and monitoring before construction	31
4.	15 Pilot or test excavation/gallery	31
4.	16 Reporting	32
4.	17 Drillcore photographs	32
4.	18 Long term storage of drillcore	33
5 Roc	k characterization	35
	.1 Regional and site geology	35
	.2 Tunnel alignment geology	35
	.3 Faults and fracture zones	36
	.4 Rock mass fractures	36
	.5 Rock strength	37
	.6 Rock mineralogy	38
	7 Rock alteration	39
	.8 Rock abrasivity	39
	.9 Rock durability and swelling potential	40
	10 Groundwater conditions, predicted inflows, and quality	44
5.		45
	12 Rock mass quality	46
	13 Tunnel alignment and section characterization	49
6 Roc	k tunnel design	51
	5.1 Design criteria and basis	51
	5.2 Technical standards and codes of practice	51
	5.3 Tunnel cross section and internal geometrical	51
C	requirements	52
6	5.4 Tunnel size and shape	53
	5.5 Portal locations and support design	54
	5.6 Horizontal alignment and separation	55
	5.7 Vertical alignment	56
	5.8 Practical grade	56
		56
		57
6.	10 Drainage requirements	3/

tents	VII

6.11	Invert requirements	57
6.12	Operational design requirements	58
6.13	Access requirements	58
6.14	Design of hydraulic pressure tunnels	59
6.15	Seismic design considerations for rock tunnels	64
6.16	Constructability of design	64
Tunnel	stability	65
7.1	General	65
7.2	Probable modes of instability	65
7.3	Stability analyses and selection of parameters	66
7.4	Empirical assessments of stability	67
7.5	Kinematic stability assessment	67
7.6	Rock mass stability assessment	68
7.7	Discrete element rock mass stability assessment	69
7.8	Evaluation of overstressing and characterization	70
7.9	Tunnel stability at fault zones	76
7.10	Squeezing conditions	79
7.11	Stability of aging hydropower tunnels	81
7.12	Review of stability of existing tunnels in similar geology	84
Tunnel	excavation	85
8.1	Practical considerations	85
8.2	Minimum construction size	85
8.3	Overbreak considerations	86
8.4	Drill and blast excavation	87
8.5	Blasting design	89
8.6	Chemical rock breaking without vibrations	90
8.7	Scaling	90
8.8	High speed drill and blast excavation for long tunnels	91
8.9	Sequential Excavation Method (SEM) for weak rock	91
8.10	Tunnel Boring Machine (TBM) excavation	93
8.11	Assessment of TBM applicability	99
8.12	The use of TBMs in squeezing ground conditions	100
8.13	The use of TBMs for mining projects	101
8.14	Minimum technical specifications for TBMs	102
8.15	Roadheader excavation	103
8.16	Methods for inclined excavation	104
8.17	Shaft excavation	105
8.18	Cavern excavation	107
8.19	New and developing technologies for excavation in rock	108
8.20	Construction methodology evaluation and risks	109

	Contents
VIII	

9	Tunnel	support	113
	9.1	General design principles	113
	9.2	Initial rock support	114
	9.3	Final rock support	115
	9.4	Practical installation	115
	9.5	Portal support	116
	9.6	Support components and typical products	117
		9.6.1 Rock bolts	117
		9.6.2 Cables	118
		9.6.3 Mesh	118
		9.6.4 Shotcrete	119
		9.6.5 Lattice girders and steel sets	120
	9.7	Tunnel support for severe overstressing and	
		rockbursts	121
	9.8	Tunnel support for squeezing conditions	123
	9.9	Corrosion potential assessment	124
	9.10	Pre-support requirements	125
	9.11	Ground freezing	127
	9.12	Tunnel stability and support design verification	128
10	Tunnel	lining requirements	131
	10.1	Purpose of tunnel linings in rock	131
	10.2	Acceptability of unlined tunnels in rock	131
	10.3	Shotcrete for final lining	133
	10.4	Shotcrete for final lining of hydraulic tunnels	134
	10.5	Cast-in-place concrete for final lining	135
	10.6	One-pass concrete segmental lining with TBM excavation	137
	10.7	Waterproofing requirements and applications	139
	10.8	Fire protection requirements	140
11		uction considerations	143
	11.1	Site mobilization	143
	11.2	Site preparation of camps, staging and laydown	
		areas	143
	11.3	Portal and shaft access	144
	11.4	Ventilation	144
	11.5	Construction water supply	145
	11.6	Electrical supply	145
	11.7	Construction pumps and sumps	145
	11.8	Groundwater and construction water treatment	146
	11.9	Environmental sampling and testing requirements	147
	11.10	Spoil disposal	148
	11.11	Tunnel support design implementation	149

Concernes in	Co	nt	ent	S	ix
--------------	----	----	-----	---	----

	11.12	Geological and geotechnical mapping requirements	151
	11.13	Quality assurance inspections	152
	11.14	Geotechnical instrumentation	152
12	Constru	action risks and mitigation measures	155
	12.1	Portal hazards	155
	12.2	Tunneling hazards	155
	12.3	Stability influence between adjacent and existing	
		tunnels	157
	12.4	Groundwater control and management	158
	12.5	Tunnel construction impacts and disturbances to the	
		community	159
	12.6	TBM entrapment and relief	160
	12.7	TBM special problems and design features	161
	12.8	Generation of fine materials during TBM excavation	161
	12.9	Probe drilling	161
	12.10	Pre-drainage	162
	12.11	Pre-excavation grouting	164
	12.12	Post-excavation grouting	164
	12.13	Pilot tunnels	165
	12.14	Investigative techniques during construction	165
	12.15	Additional tunneling equipment and resources during	
		construction	167
13	Constru	action cost estimation for rock tunnels	169
	13.1	General	169
	13.2	Costing standards and recommended procedures	170
	13.3	Key assumptions for construction cost estimates	172
	13.4	Direct construction costs	172
	13.5	Indirect construction costs	173
	13.6	Construction cost contingencies and profits	173
	13.7	Client's costs	174
	13.8	Total anticipated tunnel project cost	174
	13.9	Probabilistic analysis of construction costs and geological	
		uncertainty	175
	13.10	Integrated cost and schedule risk analysis	175
	13.11	Benchmark comparisons to similar projects	176
14	Constru	action scheduling for rock tunnels	177
	14.1	Identification of key construction activities and graphic	6.81
	110	presentation	177
	14.2	Procurement lead time for key equipment	178

	14.3	Evaluation of realistic rates of productivity and	101
	111	working hours	181
	14.4	Schedule contingencies for risk events	181
	14.5	Critical path activities	181
15	Tunnel	contract strategy and implementation	183
	15.1	General	183
	15.2	Contract documentation and types of contracts	183
	15.3	Pre-qualification	186
	15.4	Form of payment	187
	15.5	Risk sharing and compensation for differing site conditions	188
	15.6	Geotechnical baseline reports and implementation	189
	15.7	Construction contract and scheduling management	191
	15.8	Partnering	192
	15.9	Dispute resolution	193
	15.10	Claims management	194
16	Risk m	anagement	195
	16.1	Risk management and practice	195
	16.2	Qualitative risk assessments and risk registers	197
	16.3	Risk allocation	199
	16.4	Quantitative risk assessments	200
17	Inspect	ion of rock tunnels	201
	17.1	General	201
	17.2	Manual inspections, data documentation, and	
		safety practices	202
	17.3	Unwatered inspections of hydraulic tunnels	
		using ROVs	203
18	Renova	ation, repairs, and decommissioning	207
	18.1	Renovation of rock tunnels	207
	18.2	Repair of rock tunnels	208
	18.3	Decommissioning of rock tunnels	210
19	Case hi	stories and lessons learned	213
	19.1	General	213
	19.2	Lesotho Highlands Water Project Phase 1, Lesotho	213
	19.3	Pacific Place Pedestrian Tunnel, Hong Kong	214
	19.4	Taipei Ring Road Tunnels, Taiwan	215
	19.5	Bolu Mountain Road Tunnel, Turkey	215
	19.6	Gotthard Base Rail Tunnel. Switzerland	216

LOI	nte	nts	X

	19.7	Seymour Capilano Twin Drinking Water Tunnels, Canada	217
	19.8	Niagara Hydropower Tunnel, Canada	218
	19.9	Arrowhead Inland Feeder Water Transfer Tunnels, USA	220
	19.10	Canada Line Transit Tunnels, Canada	220
	19.11	Ashlu Hydropower Tunnel, Canada	221
	19.12	Forrest Kerr Hydropower Project, Canada	222
	19.12	Rio Esti Hydropower Tunnel, Panama	223
	19.13	Chacayes Hydropower Tunnel, Chile	225
	19.15	Los Arandanos Hydropower Tunnels, Chile	225
	19.15	Red Lake Gold Mine High Speed Tram Tunnel, Canada	226
	19.17	Pascua Lama Mine Conveyor Tunnel, Chile	227
	19.17	Los Condores Hydropower Tunnel, Chile	229
		is in the suited in superior. This back previous another into tenderic	
20	Engage	ment and roles and responsibilities of professionals	231
	20.1	Engagement of professionals	231
	20.2	Roles of professionals	232
		20.2.1 General	232
		20.2.2 Geologists	232
		20.2.3 Geotechnical engineers	233
		20.2.4 Civil engineers	233
		20.2.5 Tunnel engineers	233
		20.2.6 Independent technical experts	234
	20.3	Responsibilities and liability of professionals	234
21	Health	and safety	237
Re	ferences	5	241